SYMBOLS AND TERMS USED ON BOREHOLE AND TEST PIT RECORDS

SOIL DESCRIPTION

Terminology describing common soil genesis:

Topsoil	- mixture of soil and humus capable of supporting vegetative growth
Peat	- mixture of visible and invisible fragments of decayed organic matter
Till	- unstratified glacial deposit which may range from clay to boulders
Fill	- material below the surface identified as placed by humans (excluding buried services)

Terminology describing soil structure:

Desiccated	- having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
Fissured	- having cracks, and hence a blocky structure
Varved	- composed of regular alternating layers of silt and clay
Stratified	- composed of alternating successions of different soil types, e.g. silt and sand
Layer	- > 75 mm in thickness
Seam	- 2 mm to 75 mm in thickness
Parting	- < 2 mm in thickness

Terminology describing soil types:

The classification of soil types are made on the basis of grain size and plasticity in accordance with the Unified Soil Classification System (USCS) (ASTM D 2487 or D 2488). The classification excludes particles larger than 76 mm (3 inches). The USCS provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification.

Terminology describing cobbles, boulders, and non-matrix materials (organic matter or debris):

Terminology describing materials outside the USCS, (e.g. particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present:

Trace, or occasional	Less than 10%
Some	10-20%
Frequent	> 20%

Terminology describing compactness of cohesionless soils:

The standard terminology to describe cohesionless soils includes compactness (formerly "relative density"), as determined by the Standard Penetration Test N-Value (also known as N-Index). A relationship between compactness condition and N-Value is shown in the following table.

Compactness Condition	SPT N-Value
Very Loose	<4
Loose	4-10
Compact	10-30
Dense	30-50
Very Dense	>50

Terminology describing consistency of cohesive soils:

The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by *in situ* vane tests, penetrometer tests, or unconfined compression tests.

Consistency	Undrained Shear Strength		
Consistency	kips/sq.ft.	kPa	
Very Soft	<0.25	<12.5	
Soft	0.25 - 0.5	12.5 - 25	
Firm	0.5 - 1.0	25 - 50	
Stiff	1.0 - 2.0	50 – 100	
Very Stiff	2.0 - 4.0	100 - 200	
Hard	>4.0	>200	

ROCK DESCRIPTION

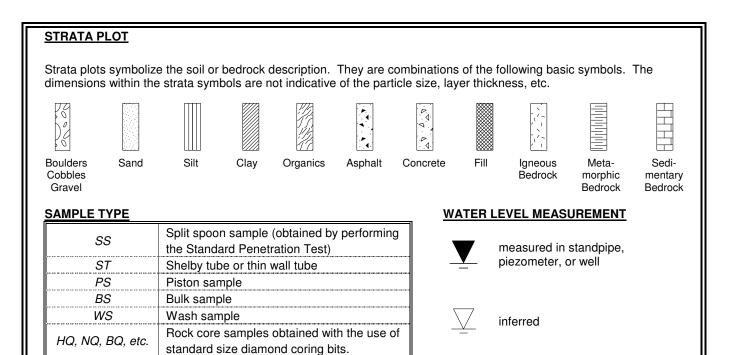
Terminology describing rock quality:

RQD	Rock Mass Quality
0-25	Very Poor
25-50	Poor
50-75	Fair
75-90	Good
90-100	Excellent

Rock quality classification is based on a modified core recovery percentage (RQD) in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be due to close shearing, jointing, faulting, or weathering in the rock mass and are not counted. RQD was originally intended to be done on NW core; however, it can be used on different core sizes if the bulk of the fractures caused by drilling stresses are easily distinguishable from *in situ* fractures. The terminology describing rock mass quality based on RQD is subjective and is underlain by the presumption that sound strong rock is of higher engineering value than fractured weak rock.

Terminology describing rock mass:

Spacing (mm)	Joint Classification	Bedding, Laminations, Bands	
> 6000	Extremely Wide	-	
2000-6000	Very Wide	Very Thick	
600-2000	Wide	Thick	
200-600	Moderate	Medium	
60-200	Close	Thin	
20-60	Very Close	Very Thin	
<20	Extremely Close	Laminated	
<6	-	Thinly Laminated	


Terminology describing rock strength:

Strength Classification	Unconfined Compressive Strength (MPa)
Extremely Weak	< 1
Very Weak	1 – 5
Weak	5 – 25
Medium Strong	25 – 50
Strong	50 – 100
Very Strong	100 – 250
Extremely Strong	> 250

Terminology describing rock weathering:

Term	Description
Fresh	No visible signs of rock weathering. Slight discolouration along major discontinuities
Slightly Weathered	Discolouration indicates weathering of rock on discontinuity surfaces. All the rock material may be discoloured.
Moderately Weathered	Less than half the rock is decomposed and/or disintegrated into soil.
Highly Weathered	More than half the rock is decomposed and/or disintegrated into soil.
Completely Weathered	All the rock material is decomposed and/or disintegrated into soil. The original mass structure is still largely intact.

RECOVERY

For soil samples, the recovery is recorded as the length of the soil sample recovered. For rock core, recovery is defined as the total cumulative length of all core recovered in the core barrel divided by the length drilled and is recorded as a percentage on a per run basis.

N-VALUE / RQD

Numbers in this column are the field results of the Standard Penetration Test: the number of blows of a 140 pound (64 kg) hammer falling 30 inches (760 mm), required to drive a 2 inch (50.8 mm) O.D. split spoon sampler one foot (305 mm) into the soil. For split spoon samples where insufficient penetration was achieved and N-values cannot be presented, the number of blows are reported over sampler penetration in millimetres (e.g. 50/75). Some design methods make use of N value corrected for various factors such as overburden pressure, energy ratio, borehole diameter, etc. No corrections have been applied to the N-values presented on the log. RQD is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery.

DYNAMIC CONE PENETRATION TEST (DCPT)

Dynamic cone penetration tests are performed using a standard 60 degree apex cone connected to A size drill rods with the same standard fall height and weight as the Standard Penetration Test. The DCPT value is the number of blows of the hammer required to drive the cone one foot (305 mm) into the soil. The DCPT is used as a probe to assess soil variability. Soil type may be inferred from adjacent boreholes and test pits.

OTHER TESTS

S	Sieve analysis
Н	Hydrometer analysis
k	Laboratory permeability
Y	Unit weight
Gs	Specific gravity of soil particles
CD	Consolidated drained triaxial
CU	Consolidated undrained triaxial with pore pressure
	measurements
UU	Unconsolidated undrained triaxial
DS	Direct Shear
С	Consolidation
Qu	Unconfined compression
	Point Load Index (Ip on Borehole Record equals
Ι _ρ	$I_p(50)$ in which the index is corrected to a reference
	diameter of 50 mm)

Ţ	Single packer permeability test; test interval from depth shown to bottom of borehole
	Double packer permeability test; test interval as indicated
Ŷ	Falling head permeability test using casing
Ţ	Falling head permeability test using well point or piezometer

